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ABSTRACT

Brain-machine interface (BMI) systems converts neural signals from motor regions of the brain into
control signals to guide prosthetic devices. The paper reviews a BMI system, its categorization and
decoder algorithms which are critical to BMI system’s performance. Kalman filter is investigated in
conversion of neural signals into prosthetic control signals by implementing it on a real data set and
comparing performance with previous decoding algorithms.
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1 Introduction

Neural decoding is used to make predictions about variables in the outside world from the activity recorded in brain.
Earlier research includes prediction of movements based on activity in motor cortex [1], predict decisions based on
activity in prefrontal and parietal cortices, and predict locations based on activity in the hippocampus [2]. When
predicting a continuous variable, decoding is simply a regression problem and when predicting a discrete variable,
decoding is simply a classification problem. Thus, there are many methods that can be used for neural decoding.
However, despite the recent advances in machine learning techniques, it is still common to use traditional methods
such as linear regression. Using modern machine learning tools for neural decoding would likely significantly boost
performance, and might allow deeper insights into neural function.

This paper investigates the use of Kalman filter as a decoding algorithm and compares its performance with earlier
decoders (Wiener filter).

2 Related Work

2.1 Brain-Machine Interface

Millions of people worldwide suffer from motor-related neurological injury or disease, which in some extreme cases,
results in loss of communication ability [3, 4]. For people with lost motor function, brain-machine interfaces (BMIs),
also known as neural prostheses or brain-computer interfaces(BCIs), have the potential to increase quality of life and
enable greater interaction with the world. Over the past two decades, significant progress has been made towards
realizing clinically viable BMI systems.

As illustrated in Figure 1, BMI systems comprise three major components: 1) sensors recording neural activity, typically
from motor cortical regions of the brain; 2) a decoder, which translates the neural recordings into control signals; and 3)
a prosthesis, such as a computer cursor on a screen or a robotic arm, controlled by the decoder.

Many challenges still remain in achieving clinically viable BMI systems, including: 1) increasing BMI performance and
robustness; 2) increasing the functional lifetime of implanted sensors; 3) replacing wires with wireless data telemetry
and wireless powering; and 4) improving BMI ease of use, so that constant technician supervision is not required [5].



A PREPRINT - JULY 19, 2019

Figure 1: This figure is from [5] providing overview of BMI systems. In an intracortical BMI system, neural signals are
recorded from electrode arrays typically implanted in motor cortical regions of the brain. The raw neural signals are
then passed through a spike detection algorithm, such as threshold detection,where a spike is detected if the measured
electrode voltage crosses a preset threshold value. In the“spike detection”block, a black dot denotes that an action
potential was measured. The neural spiking data are then sent to a decode algorithm, which outputs control signals (e.g.,
a digital signal) that guide a prosthetic device. The movement of the prosthetic device is observed by the subject, which
closes a feedback loop.

As decoder is integral to BMI performance and clinical viability, this project focuses on improving decode algorithm
design to provide subjects with high-fidelity neural control of a prosthetic device.

2.2 Decoders

The decode algorithms, which translates recorded neural population activity into prosthesis control signals, is essential
for high-performance BMI systems. Historically, decoder designs were inspired by neuroscientific views of motor
cortex as well as by linear estimation, statistical inference, and neural network theory. BMI decode algorithms are
trained with simultaneous observations of real arm or prosthesis kinematics and neural population activity. Figure 3
provides a categorization of BMI algorithms adopted from [5].

1. Population vector (PV): This algorithm was proposed by Georgopoulos et al. which is based on a neurophysical
result: under certain conditions, the cosine of the reach direction can, in part, describe the firing rate of neurons
in macaque motor cortex. The PV algorithm has been used in several BMI systems [6, 7, 8].

2. Wiener Filter: The Wiener filter was a seminal contribution in estimation theory, helping to bring a statistical
point of view into communication and control theory [9]. Both Wiener [10] and Kolmogorov [11] independently
developed filtering theory in which a noisy sequence of observations y1, ...,yk is used to calculate a linear
estimate of a signal xk, given by x̃k =

∑k
j=1 L

T
k yj , where Lj ∈ RNxM . In Wiener-Kolmogorov filtering

theory, the goal is to learn parameters L1, ...,Lk such that the squared error in predicting xk is minimized.
The major difference between PV algorithms and Wiener-Kolmogorov approach is the incorporation of neural
history yk−1,yk−1,... into the regression problem. This filter was used in first BMI clinical studies with
intracortical electrode arrays, demonstrating that a human could control a computer cursor and perform
rudimentary actions with a multi-jointed robotic arm [12].

3. Kalman Filter: Kalman filter is a recursive algorithm that estimates the current state of a dynamical system
given an observation of the output of the dynamical system and the previous state estimate [13]. In general,
the state-of-the-art BMI systems using Kalman filtering model the prosthesis kinematics as the sate of a
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Figure 2: This figure is adopted from [5] showing the categorization of BMI Algorithms

linear dynamical system with certain dynamical update laws. Next section discusses the modeling and
implementation of Kalman filter to decode neural activity in detail.

2.3 Kalman Filter

In 1960, Rudolf Emil Kalman published a seminal paper describing a solution to discrete-data filtering problem. The
Kalman filter is a recursive algorithm that estimates the current state of a dynamical system given an observation of the
output of the dynamical system and the previous state estimate [13]. This recursive algorithm served as a cornerstone in
finite-time and non-stationary analyses, particularly in the area of autonomous and assisted navigation [14, 15]. This
project discussed the modeling of prosthesis kinematics using Kalman filter as the state of a linear dynamical system
with certain dynamic update laws. In the dynamical model, it is assumed that the kinematics obey physical laws and
smooth over time [1].

In 2003, Wu et al. proposed a Kalman filter technique to estimate the kinematics of a prosthetic device given observations
of the neural population activity yk [16]. The dynamical model proposes that the kinematics of the prosthesis xk are
the state of a linear time-invariant dynamical system, while the neural activity yk is the output of the dynamical system.
The state and the output process are both modeled to have Gaussian noise. Therefore, the system can be written as

xk = Axk + wk

yk = Cxk + qk
(1)

with wk ∼ N(0,W) and qk ∼ N(0,Q). Since the sequences xk=1,...,K and yk=1,...,K are observed in the
training set while wk and qk are zero mean terms, A and C can be learned via least squares regression: A =
X[2:K]X

T
[1:K−1](X[1:K−1]X

T
[1:K−1])

−1 and C = YXT (XXT )−1. After learning A and C, W is calculated as the
sample covariance of the residuals X[2:K] −AX[1:K−1] while Q is analogously the sample covariance of the residuals
Y −CX. Given A,W,C,Q as well as an initial state condition, x0 (which is often set to be zero), the Kalman filter
recursively estimates the current state x̃k, given the current neural observation yk, and the previous state estimate x̃k−1
[13].

A benefit in modeling a dynamical update law for the kinematic variables is the ability to enforce that the prosthesis
movements obey physical kinematic laws. For example, if xk = [pTk v

T
k ]T , then the A matrix can be additionally

designed such that the position obeys pk+1 = pk + vk∆t. Further, the A matrix provides a measure of smoothing or
low-pass filtering over the kinematic variables. This is important for ensuring that the kinematics are not discontinuous
or jarring to the subject controlling the prosthesis. The Kalman filter also casts BMI systems into a Bayesian framework,
where it is now possible to model noise processes, effectively weighting neurons based on modeled noise properties.
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However, one potential limitation of Kalman filtering is that the state and observation noise processes are typically
modeled to be Gaussian, which is an oversimplified assumption.

3 Methodology

3.1 Problem Formulation

Neural prosthesis translates neural activity from the brain into control signals for guiding prosthetic devices using
BMI algorithms. Decoding models are a critical part of BMI algorithms which usually account for its performance
and clinical translation. All of the decoding models prior to Kalman filter are static and do not incorporate dynamics.
As neural data varies with time, we need models which can capture temporal relationship between data points (i.e., a
dynamical model, as given by some state-space model).

3.1.1 Linear Dynamical System (LDS)

A dynamical system is a system in which a function describes the time dependence of a point in a geometrical space. A
Linear dynamical systems is a dynamical systems whose evaluation functions are linear.

At time step k = 1, ...,K, let:

• xk ∈ RM be the state variable (e.g., arm position or velocity)
• yk ∈ RN be the observation (e.g., spike count vector)

Then, the linear dynamical system is composed of two models.

The state process:
xk+1 = Axk + wk

x1 ∼ N(ν,V)
(2)

The observation process:
yk = Cxk + qk (3)

Figure 3: Graphical model of Linear Dynamical System

Here, wk ∼ N(0,W) and qk ∼ N(0,W). Further, we assume that wk and qk are independent noise. That is they are
independent of each other (wk ⊥ qk), they are independent over time (wk ⊥ wk−1) and they are independent of the state
up to and including the current time and observations in the past (wk,qk ⊥ xk,xk−1, ... and wk,qk ⊥ yk,yk−1, ...).
Figure 3 shows the graphical model of linear dynamical system. With the assumptions of wk and qk, the state and
observation processes can be rewritten as:

The state process:
xk|xk−1 ∼ N(Axk−1,W)

x1 ∼ N(ν,V)
(4)

The observation process:
yk|xk ∼ N(Cxk,Q) (5)

The model parameters of this linear dynamical system can be summarized as θ = A,W, ν,V,C,Q.
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3.2 Training parameters of a linear dynamical system

Our goal is to learn θ from the training data and then use the model for neural decoding.

For BMI applications, we consider that the values of the state variables xk are known during training and θ is estimated
using the expectation maximization (EM) algorithms which solves the following maximization (subject to local optima):

Maximize P ({x}, {y}|θ) w.r.t θ (6)

For decoding arm trajectories from neural activity, the xk represents the state of the arm, and are typically known during
training. The corresponding yk are the observed neural activity.

Given the training data sequences, x1,x2, ...,xK and corresponding neural activity y1,y2, ...,yK , we can fit the
maximum-likelihood parameters of a linear dynamical system model.

A =

(
K∑
k=2

xkx
T
k−1

)(
K∑
k=2

xkx
T
k−1

)−1

W =
1

K − 1

K∑
k=2

(xk −Axk−1)(xk −Axk−1)T

C =

( K∑
k=1

ykx
T
k

)( K∑
k=1

xkx
T
k

)

Q =
1

K

K∑
k=1

(yk −Cxk)(yk −Cxk)T

(7)

3.3 Decoding arm trajectories from neural activity

After training the parameters, we compute P (xk|y1, ...,yk) for k = 1, ...,K. {y}k1 denote the sequence y1, ...,yk.
The variables x1, ...,xK ,y1, ...,yK are jointly Gaussian, and so P (xk|{y}k1) is also Gaussian. In the case where
P (xk|{y}k1) is Gaussian for all k, we only need to then infer its mean and covariance to fully describe the distribution.
The Kalman filter is a way to compute P (xk|{y}k1) recursively starting at k = 1. We do this by applying our state
process (which propagates our prediction forward one time step) and then our observation process (which subsequently
updates our distribution by using the most recently observed data). We call the former "one-step prediction" and the
latter "measurement update".

One-step prediction:

P (xk|{y}k−11 ) =

∫
P (xk|xk−1)P (xk−1|{y}k−11 )dxk−1 (8)

Measurement update:

P (xk|{y}k1) =
P (yk|xk)P (xk|{y}k−11 )

P (yk|{y}k−11 )
(9)

To simplify expressions, we let

µk|τ = E[xk|{y}τ1 ]

Σk|τ = cov(xk|{y}τ1)
(10)

One step prediction for jointly Gaussian models,

µk|k−1 = Aµk−1|k−1

Σk|k−1 = AΣk−1|k−1A
T + W

(11)
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Now, the measurement update solves for µk|k and Σk|k. Letting Σk = Σk|k−1 and (x̃)k = µk|k, we arrive at the
following recursions:

x̃k = Ax̃k−1 + ΣkC
T (CΣKCT + Q)−1(yk −CAx̃k−1)

Σk = AΣk−1A
T + W −AΣk−1C

T (CΣk−1C
T + Q)−1CΣk−1A

T
(12)

In above equation, the expression (CΣk−1C
T + Q)−1 is called the Kalman gain, and is typically denoted by Kk.

The intuitive interpretation of this is that the next state, x̃k, is obtained by predicting one step forward via the state
model Ax̃k−1, and then adjusting your step forward by adding Kk(yk −CAx̃k−1). The term (yk −CAx̃k−1) can
be viewed as an error in how well the model predicted the next observation.

In summary, to test newly observed data, we set x̃0 = 0 and Σ0 = 0. Then, we recursively calculate, until convergence:

1. Σk|k−1 = AΣk−1|k−1A
T + W

2. Σk|k = Σk|k−1 − Σk|k−1C
T (CΣk|k−1C

T + Q)−1CΣk|k−1

3. Kk = Σk|k−1C
T (CΣk|k−1C

T + Q)−1

Now there are tow options to decoding. The first is to simply calculate x̃k = Ax̃k−1 + Kk(yk −CAx̃k−1) at each
point in time along the recursion. However, we can also decode with the steady state form. After convergence of the
recursion, we can compute M1 = A−K∞CA and M2 = K∞. Then we can decode the newly observed data via:

x̃k = M1x̃k−1 + M2yk (13)

The performance of these two different approaches should only differ early on (when Kk has not yet converged to K∞),
but will both eventually result in the same decoded trajectories.

3.4 Data set

The data set is taken from Prof. Jonathan Kao class on Neural Signal Processing and Machine Learning (ECE 243A)
which is a data structure containing simultaneous reaching (kinematic) data and neural spiking data. The data structure
is an array of dictionaries, with each dictionary in the array corresponding to one trial performed by Monkey J. In this
data, Monkey J is performing a reaching task in which he acquires a center target, and then a peripheral target. After
acquiring the peripheral target, he comes back to acquire the center target, and then acquires another peripheral target.
This task is called a "center-out-and-back" task as the monkey continuously reaches from the center to a peripheral
target, and then back to the center. 506 trails were performed by Monkey J on 9 unique targets. All trails resulted in
success i.e., Monkey J acquired the target in all trials. The system which observed the monkey’s kinematics (Polaris)
sampled the kinematics at approximately 16.67 Hz. The data structure also contains the neural data recorded from
electrode arrays implanted in Monkey J’s primary motor cortex(M1). There are 96 electrodes and each one is measuring
spiking activity at millisecond resolution. The unique targets, reach trajectories and spike raster at one of the electrodes
are shown in Figure 4.

3.5 Implementing Kalman filter and Results

In this problem, velocity Kalman filter is used for decoding neural activity. The first 400 trials are used as training data
and the remaining 106 trials are used as testing data. We are going to use an assumption made in [1] which is that the
monkey sees cursor whenever it is updated and therefore has no uncertainty in its position. this assumption removes
the uncertainty in the cursor’s position. Figure 5 compares the decoded trajectory using Kalman filter with the actual
trajectory on test data. The mean squared error in trajectory position per trial is reduced from 5315.91 mm2 (Optimal
Linear Estimator) to 3308.94 mm2 (Wiener Filter) which is further improved to 1731.87 mm2 (using Velocity Kalman
filter).
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Figure 4: Plot of unique locations, Monkey J reach trajectories (for complete data) and spike raster at one of the
electrodes

Figure 5: Plot comparing actual trajectory (left plot) and predicted trajectory through Velocity Kalman filter (right plot)
on test data

4 Summary and Conclusion

This paper reviews the BMI systems and improves upon the previous decoding algorithms which are critical for their
viability in clinical trials. Kalman filter improves on the previous decoding algorithms namely population vector and
Wiener filter. Results shows that the MSE (mean squared error) in trajectory position per trail is approximately halved
by using the Kalman filter as decoding algorithm. Prior to 2017, Kalman filter was state-of-the-art decoding algorithms
but today, Recurrent Neural Networks showed superior performance than Kalman filter in decoding activity.
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